182 research outputs found

    Time-resolved spectra of a self-pulsing quantum dot laser

    Get PDF
    Self-sustained pulsations in the output of an InAs quantum dot laser diode in the MHz range are reported for the first time. The characteristics (shape, range and frequency) are presented for the free running laser and when optical feedback in the Littrow configuration is applied. The frequency resolved optical spectra reveal different envelope shifts between the two cases. This might be related to a change of phase-amplitude coupling across the gain maximum in agreement with the expectation for a two level system. The time scale and bifurcation scenario suggest that these are opto-thermal pulsation like those reported in quantum well amplifiers.(1

    Arrest of Domain Coarsening via Antiperiodic Regimes in Delay Systems

    Get PDF
    Motionless domains walls representing heteroclinic temporal or spatial orbits typically exist only for very specific parameters. This report introduces a novel mechanism for stabilizing temporal domain walls away from the Maxwell point opening up new possibilities to encode information in dynamical systems. It is based on anti-periodic regimes in a delayed system close to a bistable situation, leading to a cancellation of the average drift velocity. The results are demonstrated in a normal form model and experimentally in a laser with optical injection and delayed feedback.Comment: 6 pages, 5 figures, resubmitted manuscrip

    Incentives in peer-to-peer and grid networking

    Get PDF
    Today, most peer-to-peer networks are based on the assumptionthat the participating nodes are cooperative. Thisworks if the nodes are indifferent or ignorant about the resourcesthey offer, but limits the usability of peer-to-peernetworks to very few scenarios. It specifically excludes theirusage in any non-cooperative peer-to-peer environment, beit Grid networks or mobile ad-hoc networks. By introducingsoft incentives to offer resources to other nodes, we seean overall performance gain in traditional file-sharing networks.We also see soft incentives promoting the convergenceof peer-to-peer and Grid networks, as they increasethe predictability of the participating nodes, and thereforethe reliability of the services provided by the system as awhole. Reliability is what is required by Grid networks, butmissing in peer-to-peer networks

    Complexity of Polarized Spatial Patterns in Large Area Square VCSEL

    Get PDF
    We consider pattern selection process in a wide aperture VCSEL near threshold. We show that for a square geometry of the laser aperture, the patterns formed at lasing threshold can be very complicated because of a possible misalignment between directions of an intrinsic spatial anisotropy of VCSEL and lateral boundaries of its aperture. The analogy with quantum billiard structures is established, and fingerprints of wave chaos are found. Influence of localized inhomogeneous in the pump current is also considered.Comment: 10 pages, 8 figures, uses REVTEX

    Control of broad-area vertical-cavity surface emitting laser emission by optically induced photonic crystals

    Get PDF
    We control the emission properties of a broad-area vertical-cavity surface emitting laser by coupling it to an external feedback cavity containing a photorefractive crystal with an optically induced photonic lattice. The periodic modulation of the refractive index serves as a tunable filter and enables the dynamic suppression of unwanted spatial instabilities and modes, as originally suggested by Gomila et al

    Nonlinear lensing mechanisms in a cloud of cold atoms

    Get PDF
    We present an experimental study of nonlinear lensing of near-resonant light by a cloud of laser-cooled rubidium atoms, specifically aimed at understanding the role of the interaction time between the light and the atomic vapor. We identify four different nonlinear mechanisms, each associated with a different time constant: electronic nonlinearity, Zeeman optical pumping, hyperfine optical pumping and radiation pressure. Our observations can be quite accurately reproduced using a simple rate equation model which allows for a straightforward discussion of the various effects. The results are important for planning more refined experiments on transverse nonlinear optics and self-organization in samples of cold atoms

    Self-pulsing dynamics in a cavity soliton laser

    Get PDF
    The dynamics of a broad-area vertical-cavity surface-emitting laser (VCSEL) with frequency-selective feedback supporting bistable spatial solitons is analyzed experimentally and theoretically. The transient dynamics of a switch-on of a soliton induced by an external optical pulse shows strong self-pulsing at the external-cavity round-trip time with at least ten modes excited. The numerical analysis indicates an even broader bandwidth and a transient sweep of the center frequency. It is argued that mode-locking of spatial solitons is an interesting and viable way to achieve three-dimensional, spatio-temporal self-localization and that the transients observed are preliminary indications of a transient cavity light bullet in the dynamics, though on a non negligible background

    Analysis of spatial emission structures in vertical-cavity surface-emitting lasers with feedback of a volume Bragg grating

    Get PDF
    We investigate the spatial and spectral properties of broad-area vertical-cavity surface-emitting lasers (VCSEL) with frequency-selective feedback by a volume Bragg grating (VBG). We demonstrate wavelength locking similar to the case of edge-emitters but the spatial mode selection is different from the latter. On-axis spatial solitons obtained at threshold give way to off-axis extended lasing states beyond threshold. The investigations focus on a self-imaging external cavity. It is analyzed how deviations from the self-imaging condition affect the pattern formation and a certain robustness of the phenomena is demonstrated
    corecore